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A Theory

A.1 Scope of model

Because of thermal fluctuations, a polymer chain at room temperature will be bent. WLC and our

model both predict that the molecule’s observed conformations will be drawn from a certain probability

distribution of shapes, obtained by combining bends distributed according to Boltzmann statistics with

some energy function E(θ). Our task is to evaluate E(θ) from data.

A comprehensive theory of DNA bending on short length scales must also include the twist degrees

of freedom (1), as well as inhomogeneities from sequence (2, 3). Indeed, recent cyclization experiments

suggest that the harmonic-elasticity model for the twist response of DNA also overstates the energetic

cost of twist when curvature is high (4). Thus, it seems likely that the twist energy function must be

modified in a manner analogous to the one we have proposed for the bending energy. We leave this

generalizations to future work. As for bending anisotropy and sequence dependence, for the random

sequences studied here we expect them to be small effects for behavior on length scales greater than the

helical pitch of 3.5 nm.

A.2 Scale dependence in equilibrium statistical physics

Here we briefly elaborate on some ideas of scale dependence in equilibrium statistical physics, applied

to our problem.

The conformation of a macromolecule like DNA can usefully be described on any of several length

scales. That is, when describing the molecule’s behavior on a length scale �exp larger than the size of in-

dividual atoms, we can often simplify our description by imagining the macromolecule to be composed

of effective elements of some size � shorter than �exp. Simple effective interactions among the ele-
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ments then suffice to reproduce the collective behavior of the molecule, despite its underlying structural

complexity (5).

We choose to examine the conformation of DNA only on scales longer than the apparent width

�exp ≈ 5 nm shown in Fig. 1b. The mesoscopic theory describes only a reduced set of “coarse-grained

degrees of freedom,” describing the overall behavior observed by experiments on scales longer than

�exp. In our case, the mesoscopic degree of freedom is an angle describing the orientation of each

successive link in a two-dimensional chain.

We expect to be able to describe our system’s physical behavior on scales ≥ �exp by an effec-

tive mesoscopic model, discretized at some scale � that is shorter than �exp. We chose � = 2.5 nm;

other choices would also work. The model is characterized by an “effective elastic-energy function”

E({θi}; �). (In the main text we suppressed mention of the scale �, because it was always fixed to

2.5 nm.) The effective model could in principle be derived by an averaging process, starting with an

underlying microscopic model. In practice, however, one can often impose symmetries that restrict the

possible forms of the function E to the point where it can be directly obtained from experiment, as we

do here. For example, the bending energy functions we consider are symmetric under θ → −θ (except

in Sect. D.2 below).

The assumption of local interactions requires comment. Both WLC and our model assume that

each joint bends independently of the others; the effects of long-range electrostatic interactions and

conformational cooperativity, if any, are assumed to be irrelevant for behavior on length scales greater

than �exp, which in our experiments was as small as 5 nm. In typical solvent conditions, where the

Debye screening length is less than 5 nm, this assumption is reasonable. Then the distribution function

g(t̂i+1|t̂i) completely determines all polymer distribution functions and observables. Even if there

are nonlocal interactions at the microscopic level (for example reflecting conformational cooperativity

between the physical subunits (6)), nevertheless there may still be a length scale beyond which these

are unimportant. Thus we consider locality as a hypothesis to test, by dropping any possible nonlocal

terms in E, that is, by taking E =
∑

iE(θi; �) where θi is the bending angle at position i. Hence the
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bend angle distributions all take the form given in the main text:

g(t̂i+1|t̂i) = q−1 exp[−E(θi)/kBT ], (2)

In WLC, the relation between discretizations on different scales is extremely simple: The energy

functions E(θ; �1) = (ξ/2�1)θ
2, discretized on �1, and E(θ; �2) = (ξ/2�2)θ

2, discretized on �2, give

equivalent results on length scales longer than either �1 or �2. In other local elasticity models, however,

the relation is not so simple. In fact, our work illustrates a general result from renormalization-group

theory: Models that are different when viewed on one scale may be nearly indistinguishable when

viewed on longer scales.

Because the discretization scale � is to some extent arbitrary, not all apparent differences between

effective elastic energy functions with different � are physically significant. In particular, our energy

function ELSEC(θ; 2.5nm) = α|θ|kBT is nonanalytic (it has a sharp point at θ = 0), but this feature is

not physically significant: We could have derived the same behavior from a different-looking model,

discretized with �′ = 5 nm. That theory’s effective elastic energy function can be obtained by taking

the convolution of e−ELSEC(θ)/kBT with itself; it does not have a sharp point at θ = 0, although it does

retain the characteristic linear behavior at larger θ. (Indeed this function is essentially the solid red

curve in Fig. 3a.) What is physically significant are predictions on experimentally measurable scales

that differ from the predictions of WLC.

Even if the molecule is externally confined, analysis of its conformations may still give useful

information about the free bending-energy function. For example, adsorption of the molecule to a

planar surface may leave it free to bend within the plane. In that case we may expect that the appropriate

distribution will be given by an effective bending energy function restricted to tangent vectors in the

plane but with the same general form as the one appropriate for molecules in free solution.

A.3 Model-independent tests

Given any two-dimensional, local-elasticity model characterized by g(t̂i+1|t̂i), we define the persistence

length ξ by 〈cos θs,s+�〉 = e−�/(2ξ). Then for separations greater than the segment length � we have
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〈cos θs,s+L〉 = e−L/(2ξ) and (7)

〈(Rs,s+L)2〉 = 4ξ
(
L+ 2ξ(e−L/(2ξ) − 1)

)
.

This formula was also used by Rivetti et al. (8), who considered only the particular case of WLC.

A.4 Tests that distinguish different models

In the class of models we study, the angle-angle correlation of neighboring chain segments determines

all statistical properties of the polymer. We chose to examine both the angle-angle correlation G(θ;L)

of points at arbitrary separation, and the distribution K(R;L) of real-space distance R between pairs

of points at fixed arc-length separation L. The distribution G has a more direct physical meaning than

K. However, K is less sensitive than G to small errors in point placement potentially made by the

image-analysis software, so it serves as a useful additional check on our results. Fig. 3 shows that the

predictions of our model for both distributions are successful with no further fitting, once the single

parameter α is chosen to reproduce the large-L data. WLC cannot be made to fit all length scales

simultaneously.

A.5 Relation to other work

The detailed, atomic-length-scale response of a macromolecule to external stresses is complex; for

example, DNA in protein complexes has long been known to involve kinked conformations (9, 10).

The idea that DNA may undergo local elastic breakdown under external stress is not new or sur-

prising. But the implications of such breakdown for spontaneous fluctuations, and the use of those

fluctuations to measure the mesoscale effective bending energy function, have received little attention,

despite some hints in earlier, less detailed measurements. For example, small but significant deviation

from WLC behavior at distances less than ξ can be seen in data on the moments of the tangent angle

distribution (8). The behavior we found in the angle-angle correlation was also partly visible in ear-

lier, lower-resolution AFM studies (11). More recently, two groups wrote DNA models incorporating

elastic breakdown at high curvature (12, 13) (see also (14, 15)). Although these “spontaneous kinking”
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models differ in detail, they describe essentially similar physics. Both suppose that DNA has a normal

conformation with harmonic bend elasticity, but can pop spontaneously into an alternate, highly flexible

conformation (for example via local DNA melting (12)). The energy needed for this conformational

change is a new model parameter, which the authors set by demanding agreement with recent mea-

surements on the cyclization of 96-basepair constructs (16, 4). Recently, however, these experimental

results have been called into question (17), and in any case this approach does not empirically determine

the form of the bending energy function, as we have done here.

Du et al. did attempt an indirect determination of the bending energy function (17). They tabulated

the incidence of various static bends in DNA-protein complexes listed in the Protein Database, then

used these frequencies as a rough guide to the bending energy of the DNA itself. Although they noted

that the bend frequencies in complexed DNA are not expected to agree quantitatively with those of

free DNA, nevertheless their bending energy function and ours have similar qualitative features (see

Sect. D.5).

Shroff et al. experimentally measured the fluctuation behavior of short loops containing a force

reporter, and found that the bending stress needed to create such a loop is much smaller than predicted

by WLC, but in rough accord with our prediction (18, 7). Finally, a recent all-atom molecular dynamics

simulation of open DNA has also shown an unexpectedly high incidence of spontaneous, large-angle

bends (J.Z. Ruscio and A. Onufriev, unpublished).

Our experiments do not show the detailed molecular structure of the sharp bends. Yan and Marko

proposed that they could be melted segments (12). But DNA melting is not seen in the sharp bends that

occur in molecular dynamics simulations of DNA minicircles (F. Lankas, R. Lavery and J.H. Maddocks,

unpublished). Similarly, recent simulations of open DNA show a high incidence of spontaneous, large-

angle bends without any breaking of Watson–Crick pairs (J.Z. Ruscio and A. Onufriev, unpublished).

Indeed, even the kinks observed experimentally in protein–DNA complex structures, for example the

one in Ref. (10), do not appear to be melted. Finally, when a tight loop forms between two operator

sites, several regularly spaced, sharply defined sites of DNAse hypersensitivity appear (19). If the

DNA underwent a complete elastic breakdown, we would expect only a single, poorly defined site of
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sensitivity to digestion.

The main text suggested the alternative hypothesis of a thermodynamic coexistence of alternate

conformers, some of them bent. Long ago, Song and Schurr made the closely related proposal that

measured differences between the static and dynamic stiffnesses of DNA could be explained by a com-

plex energy landscape associated with small deflections (20).

B Materials and Methods

B.1 Sample preparation, AFM imaging, and control experiments

The construct used in our experiments is pGEM-3Z (Promega). The sequence is shown in Table S1.

This natural DNA does not contain phased A-tracts, which lead to large intrinsic bends (21). A variety

of experimental and theoretical works have shown that, for random DNA, sequence inhomogeneity can

simply be regarded as effectively giving a contribution to the persistence length (reviewed in (22)), and

indeed this contribution itself appears to be small (23). Visual inspection of the images showed that

the surface and the DNA were free of any salt deposits or protein impurities, which could potentially

introduce large bends in the adhered DNA molecules.

Standard checks showed that DNA molecules were equilibrated, as described in the main text.

Different salt concentrations yielded the same G(θ;L) distribution (Fig. S1). Use of [Mg2+] lower

than 6 mM yielded loosely bound DNA molecules. The lack of a strong ion-strength dependence argues

against a model of total elastic breakdown: The resulting sharp bends would be strongly electrostatically

suppressed at low ionic strength (J.Z. Ruscio and A. Onufriev, unpublished). Ref. (24) gives another

study of the influence of ionic conditions on adsorbed DNA.

It could be argued that the presence of nicks may induce large bends in the contour of adsorbed DNA

molecules. To address this issue, we grew the commercial plasmid pGEM-3Z in bacteria, minimizing

already the presence of nicks. The plasmid was linearized with BamH I and Sca I leading to sticky

and blunt ends respectively. Then we incubated both samples with E. coli DNA ligase (New England

Biolabs, Ipswich, MA, USA). This ligase is extremely inefficient in ligating blunt ends. Therefore no
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band shift was detected in the blunt-ends sample, whereas a clear shift was detected in the control sticky-

ends one (data not shown). This experiment confirmed that our ligation reaction worked properly; hence

we expect a nick-free sample. Ligase-treated samples showed the same results as described in the main

text (Fig. S2 and Table S2).

We also compared the highest available mica quality (grade V1) to the results on V4 mica reported

in the main text; the results were similar (Fig. S3 and Table S2).

Ultra-sharp tips occasionally caused physical breakage of DNA molecules. This was evidenced in

further scans. These artifacts were detected at salt concentrations lower than used to generate the data

in the main text. Nevertheless, to test if spurious breaks pose a significant issue for us, we reasoned

that this phenomenon if present would induce a correlation between large-angle bends and the absolute

orientation of the DNA chain: There would be more large-angle bends when the chain is oriented

perpendicular to the raster scan lines. Fig. S4 shows that this concern was not realized at the salt

concentration used to obtain the data in the main text.

27



1 GGGCGAATTC GAGCTCGGTA CCCGGGGATC CTCTAGAGTC GACCTGCAGG

51 CATGCAAGCT TGAGTATTCT ATAGTGTCAC CTAAATAGCT TGGCGTAATC

101 ATGGTCATAG CTGTTTCCTG TGTGAAATTG TTATCCGCTC ACAATTCCAC

151 ACAACATACG AGCCGGAAGC ATAAAGTGTA AAGCCTGGGG TGCCTAATGA

201 GTGAGCTAAC TCACATTAAT TGCGTTGCGC TCACTGCCCG CTTTCCAGTC

251 GGGAAACCTG TCGTGCCAGC TGCATTAATG AATCGGCCAA CGCGCGGGGA

301 GAGGCGGTTT GCGTATTGGG CGCTCTTCCG CTTCCTCGCT CACTGACTCG

351 CTGCGCTCGG TCGTTCGGCT GCGGCGAGCG GTATCAGCTC ACTCAAAGGC

401 GGTAATACGG TTATCCACAG AATCAGGGGA TAACGCAGGA AAGAACATGT

451 GAGCAAAAGG CCAGCAAAAG GCCAGGAACC GTAAAAAGGC CGCGTTGCTG

501 GCGTTTTTCC ATAGGCTCCG CCCCCCTGAC GAGCATCACA AAAATCGACG

551 CTCAAGTCAG AGGTGGCGAA ACCCGACAGG ACTATAAAGA TACCAGGCGT

601 TTCCCCCTGG AAGCTCCCTC GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT

651 ACCGGATACC TGTCCGCCTT TCTCCCTTCG GGAAGCGTGG CGCTTTCTCA

701 TAGCTCACGC TGTAGGTATC TCAGTTCGGT GTAGGTCGTT CGCTCCAAGC

751 TGGGCTGTGT GCACGAACCC CCCGTTCAGC CCGACCGCTG CGCCTTATCC

801 GGTAACTATC GTCTTGAGTC CAACCCGGTA AGACACGACT TATCGCCACT

851 GGCAGCAGCC ACTGGTAACA GGATTAGCAG AGCGAGGTAT GTAGGCGGTG

901 CTACAGAGTT CTTGAAGTGG TGGCCTAACT ACGGCTACAC TAGAAGAACA

951 GTATTTGGTA TCTGCGCTCT GCTGAAGCCA GTTACCTTCG GAAAAAGAGT

1001 TGGTAGCTCT TGATCCGGCA AACAAACCAC CGCTGGTAGC GGTGGTTTTT

1051 TTGTTTGCAA GCAGCAGATT ACGCGCAGAA AAAAAGGATC TCAAGAAGAT

1101 CCTTTGATCT TTTCTACGGG GTCTGACGCT CAGTGGAACG AAAACTCACG

1151 TTAAGGGATT TTGGTCATGA GATTATCAAA AAGGATCTTC ACCTAGATCC

1201 TTTTAAATTA AAAATGAAGT TTTAAATCAA TCTAAAGTAT ATATGAGTAA

1251 ACTTGGTCTG ACAGTTACCA ATGCTTAATC AGTGAGGCAC CTATCTCAGC

1301 GATCTGTCTA TTTCGTTCAT CCATAGTTGC CTGACTCCCC GTCGTGTAGA

1351 TAACTACGAT ACGGGAGGGC TTACCATCTG GCCCCAGTGC TGCAATGATA

1401 CCGCGAGACC CACGCTCACC GGCTCCAGAT TTATCAGCAA TAAACCAGCC

1451 AGCCGGAAGG GCCGAGCGCA GAAGTGGTCC TGCAACTTTA TCCGCCTCCA

1501 TCCAGTCTAT TAATTGTTGC CGGGAAGCTA GAGTAAGTAG TTCGCCAGTT

1551 AATAGTTTGC GCAACGTTGT TGCCATTGCT ACAGGCATCG TGGTGTCACG

1601 CTCGTCGTTT GGTATGGCTT CATTCAGCTC CGGTTCCCAA CGATCAAGGC

1651 GAGTTACATG ATCCCCCATG TTGTGCAAAA AAGCGGTTAG CTCCTTCGGT

1701 CCTCCGATCG TTGTCAGAAG TAAGTTGGCC GCAGTGTTAT CACTCATGGT

1751 TATGGCAGCA CTGCATAATT CTCTTACTGT CATGCCATCC GTAAGATGCT

1801 TTTCTGTGAC TGGTGAGTAC TCAACCAAGT CATTCTGAGA ATAGTGTATG

1851 CGGCGACCGA GTTGCTCTTG CCCGGCGTCA ATACGGGATA ATACCGCGCC

1901 ACATAGCAGA ACTTTAAAAG TGCTCATCAT TGGAAAACGT TCTTCGGGGC

1951 GAAAACTCTC AAGGATCTTA CCGCTGTTGA GATCCAGTTC GATGTAACCC

2001 ACTCGTGCAC CCAACTGATC TTCAGCATCT TTTACTTTCA CCAGCGTTTC

2051 TGGGTGAGCA AAAACAGGAA GGCAAAATGC CGCAAAAAAG GGAATAAGGG

2101 CGACACGGAA ATGTTGAATA CTCATACTCT TCCTTTTTCA ATATTATTGA

2151 AGCATTTATC AGGGTTATTG TCTCATGAGC GGATACATAT TTGAATGTAT

2201 TTAGAAAAAT AAACAAATAG GGGTTCCGCG CACATTTCCC CGAAAAGTGC

2251 CACCTGACGT CTAAGAAACC ATTATTATCA TGACATTAAC CTATAAAAAT

2301 AGGCGTATCA CGAGGCCCTT TCGTCTCGCG CGTTTCGGTG ATGACGGTGA

2351 AAACCTCTGA CACATGCAGC TCCCGGAGAC GGTCACAGCT TGTCTGTAAG

2401 CGGATGCCGG GAGCAGACAA GCCCGTCAGG GCGCGTCAGC GGGTGTTGGC

2451 GGGTGTCGGG GCTGGCTTAA CTATGCGGCA TCAGAGCAGA TTGTACTGAG

2501 AGTGCACCAT ATGCGGTGTG AAATACCGCA CAGATGCGTA AGGAGAAAAT

2551 ACCGCATCAG GCGCCATTCG CCATTCAGGC TGCGCAACTG TTGGGAAGGG

2601 CGATCGGTGC GGGCCTCTTC GCTATTACGC CAGCTGGCGA AAGGGGGATG

2651 TGCTGCAAGG CGATTAAGTT GGGTAACGCC AGGGTTTTCC CAGTCACGAC

2701 GTTGTAAAAC GACGGCCAGT GAATTGTAAT ACGACTCACT ATA

Table S1: DNA sequence used.
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Points separated by L=5 nm Points sep. by L=10 nm

# pairs # large fraction # med fraction # pairs # large fraction

Exp. data 93 895 82 0.00087 746 0.0079 92 725 969 0.010

Exp.,Ligase 51 303 42 0.00082 469 0.0091 50 699 467 0.0092

Exp., V1 30 597 18 0.00059 263 0.0086 30 263 326 0.011

WLC 3 122 109 91 0.000029 6848 0.0022 3 105 187 17 678 0.0057

WLC,sim. 200 152 11 0.000055 568 0.0028 185 164 1089 0.0059

LSEC,Eq. (1) 2 922 111 2756 0.00094 21 809 0.0075 2 906 273 28 773 0.0099

Table S2: Control experiments and simulations discussed in the text. The table reproduces Table 1 in main text (see its

caption), with three additional rows. Row 2 gives the incidence of bends for DNA incubated with ligase. Row 3 gives the

incidence of bends when DNA was adsorbed to V1-grade mica. Row 5 gives numerical results when WLC configurations

generated by the Monte Carlo code (row 4) were converted to simulated AFM traces and then sent through our image analysis

(solid curve in Fig. 2c, and Fig. S8).
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Figure S1: Imaging DNA with a range of salt concentrations does not alter our conclusions. These figures show G(θ; L)

for [Mg2+] = 6 mM (red), 12 mM (purple), 30 mM (blue), and 150 mM (green). For comparison, the dashed black curve is

the prediction of WLC (same as dashed lines in Fig. 3a). Panel a: L=5 nm. Panel b: L=10 nm.
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Figure S2: The same graphs as Fig. 3, except that the dots reflect experimental data for DNA incubated with ligase to repair

possible nicks.
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Figure S3: The same graphs as Fig. 3, except that the dots reflect experimental data taken on V1-grade mica.
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Figure S4: The incidence of large-angle bends is not correlated with any particular direction. The graph is a 2D histogram

giving the frequency of bends versus both bend angle and absolute orientation of the tangent relative to the AFM raster. No

preference for large-angle bends with any particular orientation is seen.
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Figure S5: Tracing algorithm. (i) A trial point is placed 2.5 nm from the current point in the trial tangent direction. (ii) The

z height data is interpolated along a segment, centered on the trial point, normal to the trial tangent, and 10 nm in length.

(iii) The z-weighted center (Eq. (3)) is computed along this segment. (iv) A new trial tangent is defined by the ray connecting

the current point and the z center. (v) Steps i-iv are repeated three times in total. (vi) The new current point is defined 2.5 nm

along the current trial tangent from the current point.

B.2 Image analysis

The algorithm alluded to in the main text is as follows: (i) A trial point is placed 2.5 nm from the current

point in the trial tangent direction. (ii) The z height data is interpolated along a segment, centered on

the trial point, normal to the trial tangent, and 10 nm in length. (iii) The z-weighted center

�Xz center ≡
∫ 10 nm

0
ds Z(�x )�x(s), (3)

is computed along this segment, whereZ(�x) is the local z height at �x and ds is the differential arc length

along the segment defined by {�x(s)} (Fig. S5a). (iv) A new trial tangent is defined by the ray connecting

the current point and the z center. (v) Steps i-iv are repeated three times in total. (vi) The next point is

then defined by moving 2.5 nm along the current trial tangent from the current point (Fig. S5b). This

process is repeated until the end of the chain is reached or the operator manually terminates the trace.
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C Monte Carlo evaluation of models

C.1 Monte Carlo code

Our Monte Carlo code was implemented in Mathematica. Our code generated sets of discrete 2D chains

with random bends chosen from a Boltzmann distribution, with E(θ) given by EWLC or ELSEC. The

required probability distribution functions were then computed and compared to those extracted from

the AFM images. Various analytic treatments also permit the evaluation of such distribution functions

(25, 26, 27, 28, 29).

Each chain began at a random angle relative to the x-axis. We did not enforce an excluded-volume

constraint, which is not expected to be a significant effect for the short separations we studied. The pa-

rameters (ξ for WLC, and α for our model) were manually adjusted to fit the long-distance distribution

G.

C.2 Simulated data

The experimental limitations of atomic force microscopy limit the resolution at which the surface con-

formation of DNA can be determined. The experimental traces only correspond to the physical con-

formation above a resolution limit. In this paper, we have analyzed the statistics of DNA at the 5 nm

length scale (even though the AFM height measurements were separated by only 1.95 nm), because we

can show that, at this resolution, the measured chain statistics reflect the underlying conformation of

the chain rather than tracing artifacts.

Several important factors contribute to the resolution limit: pixelation, tip radius, and noise. To

investigate the importance of these three factors, we generated extensive simulated AFM data using

WLC statistics and then traced using the same algorithm we employed for tracing the real experimental

data (Sect. B.2). This procedure allowed us to characterize the effects of pixelation, tip radius, and noise

and argue that the measured deviations from the WLC model are not due to limitations in experimental

resolution.
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Figure S6: a. Example of experimental AFM data (color) with inferred DNA contours (black dots). b. Example of simulated

AFM data, together with the contour found by our tracing algorithm (black dots) and the underlying conformation generated

by Monte Carlo simulation (red line). In both panels the separation between points is 2.5 nm. c. As (b), but with simulated

data from our model. Both the underlying chain (red dots) and the inferred contour are discretized to the scale � = 2.5 nm.
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Figure S7: Two dimensional histogram comparing the true bending angle θs,s+5nm of a simulated WLC chain to the

corresponding angle reported by our image-processing algorithm. The color scheme denotes the number of counts in angular

bins corresponding to pairs (θtrue, θtrace). Due to the combined effects of noise and tip convolution, the true deflection

angle cannot be determined exactly, resulting in a distribution of traced deflection angles. The dotted diagonal line represents

perfect accuracy. Fig. S8 shows that the spread in this distribution does not account for the deviation of our results from the

predictions of WLC.

To generate simulated WLC data, we first generate a two-dimensional chain conformation using a

Monte Carlo code to implement WLC statistics with persistence length 54 nm. The chain discretization

length was 0.1 nm, much smaller than the pixel size. The effect of the tip convolution was simulated

by giving this chain a gaussian height profile with amplitude 0.5 nm and full width at half maximum

chosen to resemble the observed experimental profiles.

Modeling the noise proved nontrivial because the noise correlation length was found to be longer

than a pixel. Therefore, instead of modeling the noise, we assembled a background-noise template

from AFM images using regions of mica without DNA. This background noise template had a root-

mean-square roughness of 0.06 nm. With a randomized x, y spatial offset it was directly added to the

z heights generated by the tip convolution simulation. The properties of the noise in the simulated and

experimental data were therefore identical in the bulk of the mica. This recipe produced simulated data

that were locally indistinguishable from actual AFM data (Fig. S6a,b).
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Figure S8: Simulation of instrumental effects does not alter our conclusions. Dots and colored, dashed lines are the same

as Fig. 3. Solid curves: The same distributions when a sample of WLC configurations with ξ = 54 nm was generated

numerically and converted to simulated AFM data, then subjected to the same image analysis that yielded the experimental

dots. The leftmost solid curve in (a) is the same as the solid curve in Fig. 2c.

The analysis of simulated data provides a series of useful checks and controls. A first important

check of the tracing algorithm is simply to overlay the underlying generated conformation and the

traced conformation obtained from the corresponding simulated data (Fig. S6b). What is most relevant

to the discussion in this paper is the error in the traced angles. We have used the simulated data to

estimate the distribution in measured angles given an underlying angle (Fig. S6c). These calculations

show that (on average) tip convolution leads to an underestimate of the underlying deflection angle,

whereas noise leads to an overestimate of the deflection angle. These experimental errors cancel to

some extent in our experiment: In Fig. S8, the WLC and simulated tangent distribution functions are

nearly identical despite broadening caused by noise and narrowing caused by tip convolution (see also

Table S2). We found that noise does not significantly distort the histogram of bend frequencies unless its

amplitude is taken to be twice what is actually observed in AFM data (data not shown). We are therefore

confident that tracing artifacts alone cannot explain the observed short-contour-length deviation from

the WLC theory.
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Figure S9: Excising very high-curvature regions does not alter our results. The dots and curves are the same as in Fig. S8,

except that here we identified very large bends (angle > 1.5 radian over L = 7.5 nm), in both the experimental data and the

simulated data, then excluded ±20 nm regions around each such bend from our analysis. A total of 31 regions were removed

from the experimental traces.

C.3 Excise big kinks

It is possible that various effects extrinsic to DNA elasticity could induce large-angle bends, for exam-

ple, defects on the mica surface. In addition to repeating our results on V1-grade mica (Sect. S3), we

checked directly that our conclusions do not rest upon a small set of (possibly anomalous) observations.

We did this by excising from the data all points with very large bends, together with a buffer zone

about every such point. Then we applied the same procedure to our simulated WLC data and compared

(Fig. S9). Apart from the expected truncation of our curves at the high-angle end, we saw no significant

change after this procedure; the data still exclude WLC.

D Other calculations

D.1 Force–extension and Cyclization

To demonstrate the experimental implications of the measured DNA tangent distribution function, we

have computed both the force extension of the polymer as well as the cyclization J factor (Fig. S10).

The computational tools employed in these calculation are described elsewhere (7). (Analogous calcu-
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Figure S10: Our model agrees with WLC for other experimentally observable quantities. a. Semilog plot comparing the

force versus extension relations for the 3D WLC and our model, calculated with the same 3D persistence length ξ = 50 nm

(7). Despite the dissimilar short-length-scale tangent distribution function, the entropic stretching behavior of the two models

is nearly identical. (For forces greater than ≈ 20 pN, intrinsic stretch becomes important, and neither model is expected

to be accurate.) b. The cyclization J factor probes high-curvature chain statistics. This log-log plot shows the cyclization

J factor (in units of molarity) for WLC (blue curves) and our model (red curve) models and compares with experimental

measurements (dots); see experimental papers cited in (7). The theoretical curves do not include the periodic modulation

visible in the continuous sets of experimental data (solid black curves), because we neglect twist stiffness in this paper.

Our arguments predict that our model will be identical to WLC for long DNA constructs, as shown. But, for DNA shorter

than ≈ 200 bp, the short-contour-length chain statistics become important and our model’s J factor diverges from the WLC

prediction. In fact, for 94 bp sequences, our J factor is three orders of magnitude larger than that predicted by the WLC

model. Measurements by Cloutier and Widom (16, 4) (black curves labeled CW) and by Du et al. (17) (black curves labeled

Du) are shown for comparison.

lations in kinkable WLC models were given in Refs. (12, 13, 14, 30, 15).)

D.2 Nematic ordering

We found that the experimental data coming from the same sample had a bias toward tangent vectors

pointing along a particular direction in the sample (visible in the low-angle region of Fig. S4). This

direction was not aligned with, nor perpendicular to, the AFM raster scan lines. Presumably this bias
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Figure S11: The small anisotropy visible in the distribution of absolute angles does not affect the distributions studied

here. a,b. Points, dashed lines: The same as the points and dashed lines in Fig. 3. Dotted lines: Probability distributions

calculated using the same WLC energy function as was used in the dashed lines, with an additional ordering term. The value

of the angular bias parameter λ was chosen to duplicate the slight preference for one overall orientation seen in Fig. S4.

was created by hydrodynamic effects during the washing step. Although we expected that the statistical

measures we used would be largely unaffected by this bias, we nevertheless modeled it roughly by

adding an ordering term −λ�
2 cos(2ψ)kBT to the energy function, where ψ is the angle relative to the

preferred direction and λ is a constant. We implemented the effect of this term by weighting each

generated chain by exp((λ/2)
∑

i � cos(2ψi)). Choosing λ = 0.013 nm−1 reproduced the observed

histogram of absolute angles, but had no discernible effect on the distributions G or K , as expected

(Fig. S11). In particular, this effect cannot explain the discrepancy between the experimental data and

those predicted by WLC. As a check on the Monte Carlo code, we also found an analytical formula for

G(θ;L) in WLC in the presence of the aligning field, by an extension of the methods in Refs. (26, 28);

again we found that the angle bias had little effect.

D.3 Not kinkable WLC

Fig. S12 compares our data with a version of the “kinkable WLC” model proposed in Refs. (13)–(12).

To obtain the curve, we used the formula (13)

EKWLC(θ)/kBT = −C ln

[
e−ξ0θ2/(2�1) +

1

2
ζ(�1)

2/ξ0

]
(4)

39



0.25 0.5 0.75 1. 1.25 1.5 1.75

Θ (rad)0

2

4

6

8

10

�
ln

G
(Θ

; 5
nm

)

KWLC

Figure S12: Our data are not better described by the “kinkable WLC” model. The dots are the same as in Fig. 2c. The

highest point shown corresponded to an angular bin containing just one count. It was therefore omitted from other graphs

in this paper, but serves here to give a lower bound on G at very large angles. Solid curve: The analytic formula, Eq. (4),

divided by kBT .

Here ξ0 is a “bare” bending stiffness, related to the full ξ = 54 nm by ξ = ξ0
1+ζξ0

, �1 = 5 nm, and C is a

normalization constant. Taking ζξ0 = 0.05 leads to enhanced cyclization as seen in some experiments

(13), and also leads to a probability distribution of bends corresponding to the curve in Fig. S12. Our

experimental data do not follow the prediction made by this model; our bend distribution deviates from

a harmonic form for θ > 0.6 radian, then continues to decline (so − ln G(θ; 5 nm) rises) instead of

leveling off.

Note that if surface adsorption either induced nicks in the DNA, or allowed preexisting nicks to

become free hinges, then we would expect a KWLC form for the histogram, contrary to the above

observation.

D.4 Rounded energy function

In addition to the two choices EWLC and ELSEC, we also studied a family of energy functions E(θ)

discretized at � = 2.5 nm and interpolating between these extremes. These functions were quadratic for

values of θ less than some θ0 and thereafter followed a linear rule like Eq. (1). In each case adjusting

the slope α to fit the long-scale distributions, we found that the best match was obtained with our model
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Figure S13: Our model (Eq. (1)) fits our data better than any of a family of local elasticity models interpolating between it

and WLC. a. Dotted line: Trial Einterp(θ) interpolating between WLC and our model. Dashed line: EWLC(θ), the function

used in the Monte Carlo calculation leading to the dashed lines in Fig. 3. Solid line: ELSEC(θ), the function used to make the

solid lines in Fig. 3. In each case, the curvature of the energy function was selected to reproduce the observed distributions

G(θ; L) and K(R; L) of the experimental data at long separations L. b,c. Solid lines: The same as solid lines in Fig. 3.

Dotted lines: The corresponding probability distributions calculated using Einterp(θ).

(the case θ0 = 0) (Fig. S13). As mentioned earlier, however, with other choices for the discretization

scale even our model gives a rounded distribution (see Fig. 3a).

D.5 Comparison to Du et al.

As mentioned earlier, Du et al. obtained a bending-energy function by analysis of known DNA tra-

jectories in protein–DNA complexes (17). Although, as they noted, this procedure yielded an energy

function with a much shorter persistence length than that of free DNA, nevertheless it is noteworthy that

their function also corresponds to nonlinear DNA elasticity, and that when coarsegrained to the scale of

5 nm it has the same roughly linear form as the one we found.

Fig. S14 shows the phenomenological bending energy function found by Du et al., and its form

when coarsegrained to the scale 2.5 nm. The graphs show that even at 2.5 nm, this bending energy

function differs greatly from the corresponding WLC form, and qualitatively shows the same linear

behavior at large angles as our model (Eq. (1)). As remarked by Du et al., their bending energy function
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Figure S14: Phenomenological bending energy function found by Du et al. from analysis of protein-DNA complexes.

Dashed curve: Minus the natural logarithm of the incidence of bends of various angles between successive basepairs, from

Ref. (17). Solid curve: Corresponding 2D bending energy function coarse-grained to the scale 2.5 nm, obtained by convolving

the dashed curve with itself 7.35 times. The dotted curve shows a WLC bending energy function at this same scale and with

the same persistence length as the solid curve (about 31 nm).

should not be interpreted as a quantitative measurement, because it is based on DNA conformations

under external stress. However, its general form does point to an elastic breakdown similar to the one

we measure in this paper.

E Out-of-equilibrium adsorption model

The experimental method of imaging the DNA molecule involves trapping the chain on a mica surface.

In the main text, we assumed that the bound DNA strand undergoes thermal conformational fluctuations

and achieves chain statistics that represent equilibrium behavior in two dimensions. However, it is

conceivable that the process of adsorption incurs kinks in the conformation that are long-lived and

influence the chain statistics; in this case, our results could not be used to draw conclusions about the

elasticity of DNA in solution. To rule out this possibility, we explored the nonequilibrium process of

polymer adsorption and subsequent relaxation using Brownian dynamics simulation (31, 32). We find

that the experimental behavior cannot be attributed to such nonequilibrium adsorption.

Polymer adsorption can dramatically affect the chain geometry and statistics, as demonstrated in
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a number of works (33, 34, 35, 36, 37, 38, 39). However, the effect of nonequilibrium adsorption of

semiflexible polymers is still not well understood. We modeled the polymer strand as a discrete chain

of beads with a quadratic potential for bending and stretching (31, 32). We neglected self-avoidance for

our short polymer length, assuming that the instances of chain crossing during adsorption are negligible

and that chain crossing after adsorption is attributed to chain segments passing over-and-under each

other. The bending modulus was chosen to give a free persistence length of 53 nm, and the stretching

modulus was sufficiently large to make the chain effectively inextensible. The chain dynamics are

governed by a Langevin equation with a local drag force that is linear in the segment velocity, thus

we neglected polymer-polymer and polymer-surface hydrodynamic interactions. For this simple test,

we assumed the polymer mobility in solution is much larger than the mobility of the surface-bound

polymer.

We ran two simulations to explore the adsorption behavior. In the first simulation, we took a pre-

equilibrated polymer chain (by Monte Carlo simulation) and allowed it to freely fluctuate next to an

adsorbing surface. Any chain segment that touches the surface is frozen; we ran the simulation until

all of the chain segments were fixed on the surface. In the second simulation, we took the adsorbed

conformation from the first simulation and performed a simulation of its dynamics while confined on the

adsorbing surface. This two-step simulation process implicitly assumes that the adsorption is effectively

instantaneous in comparison to the subsequent surface relaxation, i.e. the surface mobility is much

smaller than the free-chain mobility.

Fig. S15c shows a typical snapshot of the surface-bound polymer just after the nonequilibrium ad-

sorption process (defined as time zero). This conformation exhibits several tightly bent chain segments,

particularly at the left-most end of the chain. These bent segments influence the chain statistics by

enhancing the probability of large bending angles. This is manifest in the tangent-tangent correlation

function G(θ;L, t) shown in Fig. S15a, where we define this quantity as the distribution function av-

eraged over the chain length as well as over an ensemble of simulations after a given time t of surface

relaxation after the adsorption process is complete. We measure time in terms of the Brownian time

scale τB = η�2/(kBT ) where η is the DNA drag coefficient on the surface (unknown value), � is the
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Figure S15: The influence of nonequilibrium adsorption on the chain statistics. a. Tangent-tangent correlation function

G(θ; L, t) just after adsorption (t = 0), for separation lengths L of 5 nm (red), 10 nm (purple), and 30 nm (blue). Our

simulation results (solid curves) and their corresponding equilibrium behavior of the wormlike chain model in two dimension

(dashed curves) are provided in each plot. b. The same after time t = 500τB of subsequent surface relaxation. c. Typical

snapshot of a semiflexible polymer irreversibly adsorbed on a planar surface determined by Brownian dynamics simulation.

d. Average variance between the tangent-tangent correlation function from our simulations and from the wormlike chain

model versus time t/τB .

interbead spacing (2.5 nm), and kBT is the thermal energy (4.1 pN nm). Fig. S15a shows the tangent-

tangent distribution function just after adsorption (t = 0), for various separation lengths L; panel b

shows the same after time t = 500τB of subsequent surface relaxation. We include in Fig. S15 the
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simulation results (solid curves) and their corresponding curves for the equilibrium behavior of the

wormlike chain model in two dimensions (dashed curves).

The tangent-tangent correlation functions from our simulations exhibit a similar trend as our exper-

iments: Large deformation angles are enhanced relative to the wormlike chain model. However, the

deviation from the equilibrium wormlike chain curves for our simulation data becomes larger for larger

lengths, in contrast with the experimental data which tend to the wormlike chain curves at larger dis-

tance separation. Thus, we conclude from the simulation results shown in Fig. S15 that the experimental

data cannot be not explained by nonequilibrium adsorption of a wormlike chain on the surface.

There is the possibility, however, that subsequent relaxation of the chain after adsorption could

cause the chain statistics to approach the wormlike chain model in such a manner that they approach

our experimental data. However, the results shown in Fig. S15b demonstrate the expected length de-

pendence of relaxation: short length scales relax faster than long length scales (40, 41, 42). To show

this more clearly, we define the variance from the wormlike chain model as

∆ =

∫ π

0
dθ [G(θ;L, t) −GWLC(θ;L)]2 , (5)

where GWLC(θ;L) is the equilibrium tangent-tangent correlation function for the 2D wormlike chain

model. We plot in Fig. S15d the variance ∆ versus time for various length separations L. Fig. S15

shows that upon subsequent relaxation after nonequilibrium adsorption the statistics for short chain

length separation reach equilibrium faster than long chain length separation. In other words, nonequi-

librium adsorption does not explain our experimental data, and subsequent relaxation takes the statistical

behavior further from the experimental results.

These simulations focus on only one scenario where out-of-equilibrium physics impacts the chain

statistics. However, the conclusions that are drawn from these simulations typify the nonequilibrium

effect. Namely, the statistical behavior at long length scales relaxes slower than the behavior for short

length separation (40, 41, 42), as demonstrated in our simulations. The experiments show that the short

length behavior deviates from the expected equilibrium, but the experimental distribution displays the

expected equilibrium behavior at longer length scales. This effect is inconsistent with the trends demon-
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strated in our simulations. Therefore, we conclude that the nonequilibrium nature of DNA adsorption

does not explain our experimental results.
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