We are interested in studying dsDNA break repair and Chromosome organisation at the single molecule level using Atomic Force MicroscopyMagnetic Tweezers, Fluorescence, and standard biochemical techniques.

Welcome to the Moreno-Herrero Lab

The main interest of my group is to answer key questions in DNA-break repair, replication and Chromosome organisation using novel approaches based on single-molecule techniques. To do this, we develop our own instrumentation based on Atomic Force Microscopy imaging, single-molecule manipulation techniques such as Magnetic Tweezers combined with fluorescence, and establish strategic collaborations with research groups specialized on different biological systems. We are also interested in studying the mechanical properties of nucleic acids and their role in protein interaction. We investigate this from an experimental perspective using our single-molecule tools but also by all-atom molecular dynamics simulations.

We work at the National Center of Biotechnology (CNB), a research center part of the Spanish National Research Council (CSIC). The CNB is the largest CSIC institute with over 600 people working in a multidisciplinary environment that combines the latest technology in molecular biology, and structural and functional biology.

Check out our Openings section for opportunities to join the group to do the Master project, PhD or Postdoctoral research.



Research lines

Atomic Force Microscopy Techniques
20200615-173301 Scan 3_GREEN
Confocal Optical Tweezers (C-Trap™ from Lumicks) Techniques
MD simulations of Nucleic Acids Mechanical Properties
Mechanical Properties of nucleic acids Mechanical Properties
High-resolution AFM imaging of nucleic acids Mechanical Properties
DNA-end processing DNA Repair
SMC proteins DNA Organization
Type III partition systems DNA Organization
ParABS partition systems DNA Organization
Rolling Circle Replication of plasmids DNA Replication
Replication initiation proteins DNA Replication
Magnetic Tweezers Techniques
Combined MT-TIRF Techniques
BioLab Techniques


A molecular view of DNA flexibility

Here, we review recent single-molecule experiments and molecular dynamics simulations that are providing novel insights into DNA mechanics from such a molecular perspective.

Purified Smc5/6 Complex Exhibits DNA Substrate Recognition and Compaction

Eukaryotic SMC complexes, cohesin, condensin, and Smc5/6, use ATP hydrolysis to power a plethora of functions requiring organization and restructuring of eukaryotic chromosomes in interphase and during mitosis. The Smc5/6 mechanism of action and its activity on DNA are largely unknown. Here we purified the budding yeast Smc5/6 holocomplex and characterized its core biochemical and biophysical activities.

Double-stranded RNA bending by AU-tract sequences

Sequence-dependent structural deformations of the DNA double helix (dsDNA) have been extensively studied, where adenine tracts (A-tracts) provide a striking example for global bending in the molecule. However, in contrast to dsDNA, sequence-dependent structural features of dsRNA have received little attention. In this work, we demonstrate that the nucleotide sequence can induce a bend in a canonical Watson-Crick base-paired dsRNA helix.