Publications

54Barbara Martin-Garcia*, Alejandro Martin-Gonzalez* et al. Nucleic Acids Research (2018). Published: 14 May 2018. doi: 10.1093/nar/gky370

The TubR–centromere complex adopts a double-ring segrosome structure in Type III partition systems.

LINK
53 Arroyo et al. Journal of Molecular Biology (2018). Volume 430, Issue 10, 11 May 2018, Pages 1495-1509. Available online 4 April 2018. https://doi.org/10.1016/j.jmb.2018.03.027

Supramolecular assembly of human pulmonary surfactant protein SP-D.

LINK
52Madariaga-Marcos et al. Nanoscale Mar 1;10(9):4579-4590 (2018). doi: 10.1039/c7nr07344e.

Force determination in lateral magnetic tweezers combined with TIRF microscopy.

LINK
51Vilhena JG et al. Journal of Physical Chemistry B Jan 18;122(2):840-846 (2018). doi:10.1021/acs.jpcb.7b06952. [Epub 2017 Oct 10].

Stick-Slip Motion of ssDNA Over Graphene.

LINK
50Gemma LM Fisher*, César L Pastrana*, Victoria A Higman* et al. eLife Dec 15;6 (2017) pii: e28086. doi: 10.7554/eLife.28086.

The structural basis for dynamic DNA binding and bridging interactions which condense the bacterial centromere.

LINK
49Marín-González*, Vilhena*, Perez and Moreno-Herrero. Proceedings of the National Academy of Sciences USA 114(27), 7049-7054 (2017). doi: 10.1073/pnas.1705642114.

Double stranded DNA and RNA under constant stretching forces: atomistic insights from microsecond-long molecular dynamics.


LINK
48Fuentes-Pérez ME et al. Scientific Reports Feb 23; 7:43342. doi: 10.1038/srep43342 (2017).

TubZ filament assembly dynamics requires the flexible C-terminal tail.

LINK
47Pastrana*, Carrasco* et al. Nucleic Acids Research 44(18), 8885-8896 Published Online Aug3 (2016).

Force and twist dependence of RepC nicking activity on torsionally-constrained DNA molecules.

LINK
46Ares et al. Nanoscale 8,11818-11826 (2016).

High resolution atomic force microscopy of double-stranded RNA


LINK
45Gilhooly et al. Nucleic Acids Research 44(6), 2727-2741 Published Online Jan 13 (2016).

Chi hotspots trigger a conformational change in the helicase-like domain of AddAB to activate homologous recombination

LINK
44Gollnick et al. Small 11(11), 1273-1284 (2015), (Accepted, Oct 7, 2014). (cover article).

Probing DNA helicase kinetics with temperature controlled magnetic tweezers

LINK
43Taylor*, Pastrana* et al. Nucleic Acids Research 43(2), 719-731 (2015) (Accepted, 28-Nov, 2014, Online 8 Jan 2015).

Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation

LINK
42Torreira et al. Structure 23(1), 183-189 (2015), (Accepted, Nov, 2014).

Amyloid fibers of the bacterial prionoid RepA-WH1 recapitulate the dimer to monomer transitions at initiation of DNA replication

LINK
41Wegrzyn et al. Nucleic Acids Research 42(12), 7807-7818 (2014).

Sequence-specific interactions of Rep proteins with ssDNA in the AT-rich region of the plasmid replication origin

LINK
40Carrasco et al. DNA Repair 20, 119-129 (2014) (cover article).

Single molecule approaches to monitor the recognition and resection of double-stranded DNA breaks during homologous recombination

LINK
39N. Laohakunakorn et al. Nano Letters 13 (11), 5141-5146 (2013).

A Landau-Squire Nanojet

LINK
38C. Carrasco et al. Proceedings of the National Academy of Sciences USA 110 (28), E2562-2571 (2013).

On the Mechanism of Recombination Hotspot Sequence Scanning by a Bacterial Helicase-Nuclease

LINK
37S. Hernández-Ainsa et al. ACSnano 7 (7), 6024-6031 (2013).

DNA Origami Nanopores for Controlling DNA Translocation

LINK
36J. Camunas-Soler et al. ACSnano 7 (6), 5102-5114 (2013).

Electrostatic Binding and Hydrophobic Collapse of Peptide-Nucleic Acid Aggregates Quantified Using Force Spectroscopy

LINK
35N.A.W. Bell et al. Lab on a Chip 13, 1859-1862 (2013).

Multiplexed ionic current sensing with glass nanopores

LINK
34M.E. Fuentes-Perez et al. Methods 60, 113-121 (2013).

AFM volumetric methods for the characterization of proteins and nucleic acids

LINK
33E. Herrero-Galan et al. The Journal of the American Chemical Society 135(1), 122-131 (2013).

Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level

LINK
32F. Moreno-Herrero and J. Gomez-Herrero.

AFM: basic concepts
Chapter in book Atomic Force Microscopy in Liquid. Biological Applications

Arturo M. Baro & Ronald G. Reifenberger, Editors
Wiley-VCH (2012) Print ISBN: 978-3-527-32758-4.
LINK
31 M.E. Fuentes-Perez et al. Biophysical Journal 102, 839-848 (2012).

Using DNA as a fiducial marker to study SMC complex interactions with the Atomic Force Micrsocope

LINK
30Yeeles JTP et al. Molecular Cell 42, 806-816 (2011).

Recombination hotspots and single-stranded DNA binding proteins couple DNA translocation to DNA unwinding by the AddAB helicase-nuclease

LINK
29C.Carrasco and F. Moreno-Herrero Enclycopedia of Life Sciences DOI:10.1002/9780470015902.a0023173 (2011).

Magnetic Tweezers

LINK
28S. Hormeno et al. Biophysical Journal 100, 1996-2006 (2011).

Mechanical Properties of High GoC-content DNA with A-type base-stacking

LINK
27S. Hormeno et al. Biophysical Journal 100, 2006-2015 (2011).

Condensation prevails over B-A transition in the structure of DNA at low humidity"

LINK
26T. van der Heijden et al. Nano Letters 7(4), 1112 (2007).

AFM tip-induced dissociation of RecA-dsDNA filaments

LINK
25T. van der Heijden et al. Nano Letters 6(12), 3000-3002 (2006).

Comment on "Direct and real-time visualization of the disassembly of a single RecA-DNA-ATPgS complex using AFM imagin in fluid"

LINK
24P.A. Wiggins et al. Nature Nanotechnology 1, 137-141 (2006).

High flexibility of DNA on short length scales probed by atomic force microscopy

LINK
23F. Moreno-Herrero et al. Nucleic Acids Research 34(10), 3057-3066 (2006).

Structural analysis of hyperperiodic DNA from Caenorhabditis elegans

LINK
22F. Moreno-Herrero et al. Nucleic Acids Research 33(18), 5945-5953 (2005).

Atomic force microscopy shows that vaccinia topoisomerase IB generates filaments on DNA in a cooperative fashion

LINK
21 F.Moreno-Herrero et al. Nature 437 (7057), 440-443 (2005).

Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon DNA binding

LINK
20 F. Moreno-Herrero et al. Biophysical Journal 88(1), 381A-381A Part 2 Suppl. S. (2005).

The interaction between Vaccinia topoisomerase IB and DNA studied with the atomic force microscope
19 J.A. Abels et al. Biophysical Journal 88(1), 570A Part 2 Suppl. S. (2005).

Single-molecule measurements of the persistence length of double-stranded RNA
18J.A. Abels et al. Biophysical Journal 88(4), 2737-2744 (2005).

Single molecule measurements of the persistence length of double-stranded RNA

LINK
17M. Diaz-Hernandez et al. Journal of Neuroscience 24(42), 9361-9371 (2004).

The stable component of Huntington's disease inclusions consist of amyloid-like huntingtin filaments that can be purified and that are susceptible to revert in vivo

LINK
16F. Moreno-Herrero et al. European Polymer Journal 40(5), 927-932 (2004).

Jumping mode atomic force microscopy obtains reproducible images of Alzheimer paired helical filaments in liquids

LINK
15F. Moreno-Herrero et al. Physical Review E 69, 031915 (2004).

Jumping Mode Scanning Force Microscopy: a tool for precise force control and high-resolution imaging in liquids

LINK
14F. Moreno-Herrero et al. Biophysical Journal 86, 517-525 (2004).

Characterization by atomic force microscopy of Alzheimer paired helical filaments under physiological conditions

LINK
13F. Moreno-Herrero et al. Ultramicroscopy 96, 167-174 (2003).

DNA height in Scanning Force Microscopy

LINK
12F. Moreno-Herrero et al. Applied Surface Science 210, 22-26, (2003).

Jumping Mode Scanning Force Microscopy: a suitable technique for imaging DNA in liquids

LINK
11F. Moreno-Herrero et al. Nanotechnology 14 (2), 128-133, (2003).

Topographic characterization and electrostatic response of M-DNA studied by Atomic Force Microscopy

LINK
10F. Moreno-Herrero et al. Applied Physics Letters 81, 2620 (2002).

Scanning Force Microscopy Jumping and Tapping modes in liquids

LINK
9C.Gómez-Navarro*, F. Moreno-Herrero* et al. Proceedings of the National Academy of Sciences USA 99 (13), 8484-8487 (2002).

Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior
*Shared first authorship

LINK
8C.Gómez-Navarro et al. Nanotechnology 13, 1-4 (2002).

Scanning force microscopy three-dimensional modes applied to the study of the dielectric response of adsorbed DNA molecules

LINK
7T.de la Cera et al. Journal of Molecular Biology 319, 703-714 (2002).

Mediator factor Med8p interacts with the hexokinase 2: Implication in the glucose signalling pathway of Saccharomyces cerevisiae

LINK
6C.Gómez-Navarro et al. Phantoms Newsletters 4, 4-6 (2002).

DNA, the miracle molecule

PDF
5 F. Moreno-Herrero et al. Journal of Alzheimer's Disease 3, 443-451 (2001).

Characterization by atomic force microscopy of tau polymers assembled in Alzheimer´s disease

PDF
4F. Moreno-Herrero et al. Biochemical and Biophysical Research Communications 280, 151-157 (2001).

Imaging and mapping protein-binding sites on DNA regulatory regions with atomic force microscopy

LINK
3P.J.de Pablo et al. Physical Review. Letters 85 (23), 4992-4995 (2000).

Absence of dc-conductivity in lambda DNA

LINK
2 F. Moreno-Herrero et al. Surface Science 453, 152-158 (2000).

The role of shear forces in scanning force microscopy: a comparison between jumping mode and tapping mode

LINK
1F. Moreno-Herrero et al. FEBS Letters 459, 427-432 (1999).

Analisis by atomic force microscopy of Med8 binding to cis-acting regulatory elements of the SUC2 and HXK2 genes of Saccharomyces cerevisiae

LINK
15C. López Pastrana. PhD Thesis Supervision. 2013 – 24 Nov. 2017
National Center of Biotechnology CNB-CSIC

Magnetic tweezers. Applications to the study of DNA proteins interactions in DNA replication, condensation and segregation
14J. Cabello. Master Thesis Supervision. Oct 2016-June. 2017
National Center of Biotechnology CNB-CSIC

Characterization and optimization of functionalized surfaces for combined Magnetic Tweezers and fluorescence microscopy
13B. Gollnick. PhD Thesis Supervision. 2009 - 22 Jan. 2015
National Center of Biotechnology CNB-CSIC

Optical and Magnetic Tweezers for Applications in Single-Molecule Biophysics and Nanotechnology
12M. E. Fuentes-Perez. PhD Thesis Supervision. 2010 - 6 Nov. 2014
National Center of Biotechnology CNB-CSIC

Characterization of Nucleic Acids, proteins, and protein-protein and DNA-protein interactions with Atomic Force Microscopy
11I. Lopez. Master Thesis Supervision. Jan-Sept. 2013-
National Center of Biotechnology CNB-CSIC

Fast AFM imaging of DNA-protein interactions
10A. Karlowicz. Internship Supervision. Jan-Feb 2013
National Center of Biotechnology CNB-CSIC

AFM studies of Lon-DNA interactions
9F. Zuttion. Master Thesis Supervision. Sept. 2011- Sept. 2012
National Center of Biotechnology CNB-CSIC

Construction and characterization of a temperature-controlled fluid cell for single-molecule studies with Magnetic Tweezers
8K. Wegrzyn (Gdansk, Poland). Internship Supervision. July 2012
National Center of Biotechnology CNB-CSIC

AFM studies of TrfA and Lon proteins
7C. Pastrana. Master Thesis Supervision. Sept. 2011- Sept. 2012
National Center of Biotechnology CNB-CSIC

Magnetic Tweezers study of the interaction between the protein SpoOJ and the DNA
6K. Wegrzyn (Gdansk, Poland). Internship Supervision. October 2011
National Center of Biotechnology CNB-CSIC

AFM studies of TrfA-DNA interactions
5M. Meunier (Institut d´Optique, France). Internship Supervision. May 2009- Aug. 2009
National Center of Biotechnology CNB-CSIC

Atomic Force Microscopy studies of addAB helicase nuclease in DNA break repair
4B. Otte-Ortiz (TUDelft, The Netherlands). Internship Supervision. Sept 2008- Feb. 2009
Centro de Investigacion en Nanociencia y Nanotecnologia

Towards DNA-AddAB Interactions in Magnetic Tweezers

PDF
3 L. Holtzer. Master Thesis. 2005
Delft University of Technology

AFM study of the interaction between vaccinia topoisomerase IB and DNA
PDF
2F. Moreno-Herrero. Ph.D. Thesis. 2003
Universidad Autonoma de Madrid

Aplicaciones de la microscopia de fuerzas al estudio de moleculas biologicas individuales (in Spanish)

1F. Moreno-Herrero. Master Thesis. 2001
Universidad Autonoma de Madrid

Propiedades electricas del ADN (in Spanish)

PDF

On Barbara Martin-Garcia*, Alejandro Martin-Gonzalez* et al. Nucleic Acids Research (2018)

  • Crónica de Cantabria. 18-05-2018

“Descubren que un doble anillo para segregar el ADN es el responsable de la producción de la toxina botulínica”. LINK

  • Noticias de la ciencia. 18-05-2018

“Un doble anillo para segregar el ADN responsable de la producción de la toxina botulínica”. LINK

  • Bolsamania- 18-05-2018

“Descubren que un doble anillo para segregar el ADN es el responsable de la producción de la toxina botulínica”. LINK

  • El economista- 18-05-2018

“Descubren que un doble anillo para segregar el ADN es el responsable de la producción de la toxina botulínica”. LINK

  • Europapress- 18-05-2018

“Descubren que un doble anillo para segregar el ADN es el responsable de la producción de la toxina botulínica”. LINK

  • Infosalus- 18-05-2018

“Descubren que un doble anillo para segregar el ADN es el responsable de la producción de la toxina botulínica”. LINK

  • Republica de las ideas- 18-05-2018

“Un doble anillo para segregar el ADN, origen de la toxina botulínica”. LINK

On Madariaga-Marcos et al. Nanoscale (2018)

  • CNB Press Release. 22-2-2018

“Cómo ver y manipular simultáneamente una única molécula de ADN”. LINK

  • Agencia SINC. 27-2-2018

“Cómo ver y manipular simultáneamente una única molécula de ADN”. LINK

  • EFE: Futuro. 26-2-2018

“Espiar y manipular a la vez una molécula de ADN”. LINK

  • madri+d. 26-2-2018

“Cómo ver y manipular simultáneamente una única molécula de ADN”. LINK

  • SEBBM Sala de Prensa. 26-2-2018

“Cómo ver y manipular simultáneamente una única molécula de ADN”. LINK

  • Highlight article at Biofisica Magazine (Spanish Biophysical Soc.) 20-04-2018

“Force determination in lateral magnetic tweezers combined with TIRF microscopy”. LINK

  • INFOSALUS. Com. 23–2-2018

“Desarrollan una técnica efectiva para conseguir manipular de manera muy precisa una cadena de ADN”. LINK

  • Periodista Digital. 4-3-2018

“Logran ver y manipular simultáneamente una única molécula de ADN”. LINK

  • DiarioMedico.com 26-2-2018

“Un dispositivo permite ver y manipular una única molécula de ADN”. LINK

  • Cuatro. 23-2-2018

“Desarrollan una técnica efectiva para conseguir manipular de manera muy precisa una cadena de ADN”. LINK

  • ecoDiario.es   23-2-2018

“Desarrollan una técnica efectiva para conseguir manipular de manera muy precisa una cadena de ADN”. LINK

  • Boletin Al Día. Noticias de salud. 6-3-2018

“Cómo ver y manipular simultáneamente una única molécula de ADN”. LINK

  • NTYC. 26-2-2018

“Cómo ver y manipular simultáneamente una única molécula de ADN”. LINK

  • Bionoticias. Univ. Salamanca. pag.8. 5-3-2018

“Cómo ver y manipular simultáneamente una única molécula de ADN”. LINK

  • Fundación Carlos Slim. 2-3-2018

“How to simultaneously view and manipulate a single DNA molecule”. LINK

  • Radio Programme. Universidad Miguel Hernandez. Elche. (listen @ 29’20’’)
    LINK 

On Marín-González, Vilhena et al. PNAS (2017)

  • CNB Press Release. 20-6-2017

“Se desvela el misterio de por qué el ADN se enrolla al estirarlo y el ARN se desenrolla”. LINK

  • madri+d. 21-6-2017

“Se desvela el misterio de por qué el ADN se enrolla al estirarlo y el ARN se desenrolla”. LINK

  • Infosalus. 20-6-2017

“¿Por qué el ADN se enrolla cuando se estira y el ARN se desenrolla?”. LINK

  • EcoDiario.es. 20-6-2017

“Científicos españoles descubren por qué el ADN se enrolla al estirarlo mientras que el ARN se desenrolla”. LINK

  • Diario de Navarra. 20-6-2017

“Descubren por qué el ADN se enrolla al estirarlo mientras que el ARN se desenrolla”. LINK

  • Faro de Vigo. 21-6-2017

“Científicos descubren por qué el ADN se enrolla y el ARN se ‘alisa’”. LINK

On M.E. Fuentes et al. Sci. Reports (2017)

  • Highlight article at Biofisica Magazine (Spanish Biophysical Soc.) 20-03-2017

“TubZ filament assembly dynamics requires the flexible C-terminal tail” LINK

On Pastrana, Carrasco et al. NAR (2016)

  • CNB press release. 31-8-2016

“RepC solamente inicia la replicación de un plásmido si está enrollado hacia la izquierda” LINK

  • Biotech-Spain. 31-8-2016

“RepC only initiates replication of a plasmid if it is leftwards coiled” LINK

  • Highlight article at Biofisica Magazine (Spanish Biophysical Soc.) 14-11-2016  LINK

On Ares et al. Nanoscale (2016).

  • Madrid I+D. 10-10-2016

“Obtienen imágenes en alta resolución de una molécula con potencial biotecnológico” LINK

  • UAM-Gazette. 10-10-2016

“Obtienen imágenes en alta resolución de una molécula con potencial biotecnológico” LINK

  • EFE-Futuro. 10-10-2016

“Obtienen imágenes en alta resolución de una molécula con potencial biotecnológico” LINK